Geochemical and microbiological controls on dissimilatory iron reduction
نویسنده
چکیده
Recent experimental studies permit development of conceptual and quantitative models of microbial Fe(III) oxide reduction at circumneutral pH that can be compared to and contrasted with established models of abiotic mineral dissolution. The findings collectively support a model for controls on enzymatic reduction that differs fundamentally from those applied to abiotic reductive dissolution as a result of two basic phenomena: (1) the relatively minor influence of oxide mineralogical and thermodynamic properties on rates of enzymatic reduction compared to abiotic reductive dissolution, and (2) the major limitation which sorption and/or surface precipitation of biogenic Fe(II) on residual oxide and Fe(III)-reducing bacterial cell surfaces poses to enzymatic electron transfer in the presence of excess electron donor. Parallel studies with two well-characterized Fe(III)-reducing organisms (Shewanella putrefaciens and Geobacter sulfurreducens) lead to common conclusions regarding the importance of these phenomena in regulating the rate and long-term extent of Fe(III) oxide reduction. Models in which rates of enzymatic reduction are limited by Fe(III)-reducing bacterial cell density together with the abundance of ‘available’ oxide surface sites (as controlled by oxide surface area and the accumulation of surface-bound biogenic Fe(II)) provide an adequate macroscopic description of controls on the initial rate and long-term extent of oxide reduction. To cite this article: E.E. Roden, C. R. Geoscience 338 (2006). © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
منابع مشابه
Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d'Alene, Idaho).
Mining-impacted sediments of Lake Coeur d'Alene, Idaho, contain more than 10% metals on a dry weight basis, approximately 80% of which is iron. Since iron (hydr)oxides adsorb toxic, ore-associated elements, such as arsenic, iron (hydr)oxide reduction may in part control the mobility and bioavailability of these elements. Geochemical and microbiological data were collected to examine the ecologi...
متن کاملIron-Based Microbial Ecosystem on and Below the Seafloor: A Case Study of Hydrothermal Fields of the Southern Mariana Trough
Microbial community structures in deep-sea hydrothermal vents fields are constrained by available energy yields provided by inorganic redox reactions, which are in turn controlled by chemical composition of hydrothermal fluids. In the past two decades, geochemical and microbiological studies have been conducted in deep-sea hydrothermal vents at three geographically different areas of the Southe...
متن کامل279. Dissimilatory Fe(III)- and Mn(IV)-Reducing Prokaryotes
Dissimilatory Fe(III) reduction is the process in which microorganisms transfer electrons to external ferric iron [Fe(III)], reducing it to ferrous iron [Fe(II)] without assimilating the iron. A wide phylogenetic diversity of microorganisms, including archaea as well as bacteria, are capable of dissimilatory Fe(III) reduction. Most microorganisms that reduce Fe(III) also can transfer electrons ...
متن کاملMicrobiological and geochemical heterogeneity in an in situ uranium bioremediation field site.
The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate...
متن کاملCharacterization of geochemical constituents and bacterial populations associated with As mobilization in deep and shallow tube wells in Bangladesh.
While millions of people drink arsenic-contaminated tube well water across Bangladesh, there is no recent scientific explanation which is able to either comprehensively explain arsenic mobilization or to predict the spatial distribution of affected wells. Rather, mitigation strategies have focused on the sinking of deep tube wells into the currently arsenic-free Pleistocene aquifer. In this stu...
متن کامل